**Switches & Pilot Lights** 

**Display Lights** 

# **RQ Series PCB Relays**

IDEC RQ relays are low-profile, PCB relays that provide quality within a compact package. Size equals value. RQ relays are small, yet maintain high contact ratings and long operational life. For larger power needs, a 16A model is also available.

- Low profile: 29 x 12.7 x 15 mm • Contact rating:
  - 8A (DPDT) and 12A (SPDT)
- High capacity model with 16A (SPDT) contact rating
- Operational life: 100K cycles at full resistive load 10 million cycles, no load
- LED/Diode Plug-in modules available with DIN rail socket





(example) R01V-CM A115

Part No.

-Coil Voltage Code



## **Part Number Selection**

|          |                    | Part Number  |                                 |
|----------|--------------------|--------------|---------------------------------|
| Contact  | Model              | Pin Terminal | Coil Voltage Code               |
| SPDT 12A | Basic              | RQ1V-CM-□    | A24, A115, A230, D12, D24       |
| SPDT 16A | High Capacity (HC) | RQ1V-CH-🗆    | A24, A115, A230, D12, D24, D110 |
| DPDT 8A  | Basic              | R02V-CN-□    | A24, A115, A230, D12, D24, D110 |
|          |                    |              | Ordering Inf<br>When ordering   |



| AC | 110-120V AC | 220-240V AC | 12V DC | 24V DC | 110V DC |
|----|-------------|-------------|--------|--------|---------|
|    |             |             |        |        |         |

D12

D24

www.idec.com

D110

A230

**Coil Voltage Table Coil Voltage Code** 

**Coil Rating** 

A24

24V

A115



Switches & Pilot Lights

## Sockets

| Relays        | Finger-safe DIN<br>Rail Mount | PCB Mount |  |  |  |  |
|---------------|-------------------------------|-----------|--|--|--|--|
| RQ1           | SQ1V-07B <sup>†</sup>         | SQ1V-63*  |  |  |  |  |
| RQ2<br>RQ1 HC | SQ2V-07B <sup>†</sup>         | SQ2V-63*  |  |  |  |  |
|               |                               |           |  |  |  |  |

## **Replacement Parts & Accessories**

| Part Number Description |                                                 | Part Number |             |  |  |  |  |  |
|-------------------------|-------------------------------------------------|-------------|-------------|--|--|--|--|--|
| SQ9Z-C                  | Replacement retaining clip                      | SQ9Z-LD     | Dio         |  |  |  |  |  |
| SQ9Z-C63                | Replacement hold-down spring for SQ PCB sockets | SQ9Z-LR     | RC  <br>DIN |  |  |  |  |  |
| SQ9Z-J8                 | 8 pt jumper for DIN socket                      | SQ9Z-P      | Rep         |  |  |  |  |  |

| rt Number | Description                                    |
|-----------|------------------------------------------------|
| Z-LD      | Diode plug in modules for DIN socket           |
| Z-LR      | RC plug-in module (110-230V AC) for DIN socket |
| Z-P       | Replacement marking plate                      |

# 2. <sup>+</sup>C

1.

| *Comes with hold down spring                              |
|-----------------------------------------------------------|
| <sup>†</sup> Comes with retaining clip and marking plate. |

Accessories

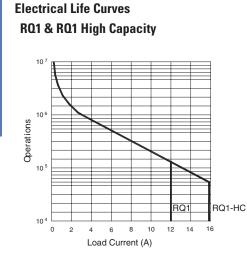
| Description                              | Appearance | Use with             | Part No. | Remarks                                                                                                                                                                                                                                                                           |  |  |  |
|------------------------------------------|------------|----------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Aluminum<br>DIN Rail<br>(1 meter length) | 200        | All DIN rail sockets | BNDN1000 | IDEC offers a low-profile DIN rail (BNDN1000). The BNDN1000 is de-<br>signed to accommodate DIN mount sockets. Made of durable extruded<br>aluminum, the BNDN1000 measures 0.413 (10.5mm) in height and 1.37<br>(35mm) in width (DIN standard). Standard length is 39" (1,000mm). |  |  |  |
| DIN Rail End<br>Stop                     | A DE STATE | DIN rail             | BNL5     | 9.1 mm wide.                                                                                                                                                                                                                                                                      |  |  |  |

## **Specifications**

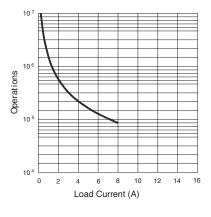
| Mode                                                           | Model (Contact)                                          |                                           |                                                        | R02  |  |
|----------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|--------------------------------------------------------|------|--|
| No. of poles                                                   | 1                                                        | 1                                         | 2                                                      |      |  |
| <b>Contact Configuration</b>                                   |                                                          | SPDT                                      | SPDT                                                   | DPDT |  |
| Contact Rating                                                 |                                                          | 12A                                       | 16A                                                    | 8A   |  |
| Contact Material                                               |                                                          | S                                         | ilver-Nickel a                                         | lloy |  |
| <b>Contact Resistance</b>                                      |                                                          |                                           | 100mΩ max                                              | (    |  |
| Operating Time                                                 |                                                          |                                           | 12 ms                                                  |      |  |
| Release Time                                                   |                                                          |                                           | 8 ms                                                   |      |  |
| Dielectric Strength Between contact & coil<br>Between contacts |                                                          | 5,000VAC, 1 minute<br>1,000VAC, 1 minute  |                                                        |      |  |
| Vibration Resistance                                           | Vibration Resistance Damage limits<br>Operating extremes |                                           | 10-55 Hz, amplitude 1.5mm<br>10-55 Hz, amplitude 1.5mm |      |  |
| Shock Resistance                                               | Damage limits<br>Operating extremes                      | 100m/s² min (10G)<br>1,000m/s² min (100G) |                                                        |      |  |
| Mechanical Life                                                |                                                          | 10,000,000 operations                     |                                                        |      |  |
| Electrical Life @ Full Rat                                     | ed Load                                                  | 100,000 operations                        |                                                        |      |  |
| Operating Temperature                                          | -40 to 85° C                                             |                                           |                                                        |      |  |
| <b>Operating Humidity</b>                                      | 45 to 85% RH                                             |                                           |                                                        |      |  |
| Dimensions (H x W x D n                                        | nm)                                                      | 29 x 12.7 x 15                            |                                                        |      |  |
| Weight (Approx.)                                               |                                                          | 15g                                       |                                                        |      |  |

**Display Lights** 

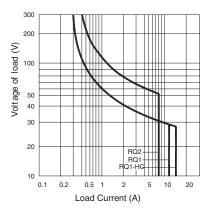
# IDEC


## **RQ Series**

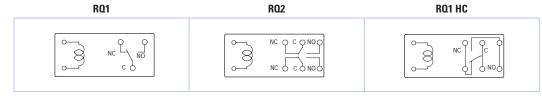
## Coil Ratings


| Datad | Nominal Current Coil Power Consumption |         | Diskun Valtara | Dronout Valtoria | Max Allowable Voltage |                        |                |                 |                       |
|-------|----------------------------------------|---------|----------------|------------------|-----------------------|------------------------|----------------|-----------------|-----------------------|
| nateu | l Voltage                              | 50HZ    | 60HZ           | Resistance       | 50HZ 60HZ             |                        | Pickup Voltage | Dropout Voltage | wax Allowable voltage |
|       | 12V                                    | 33.     | 3mA            | 360Ω             | 0.40W                 |                        |                | 5% Min          | 130%                  |
| DC    | 24V                                    | 16.     | 7mA            | 1,440Ω           |                       |                        | 80% Max        |                 |                       |
|       | 110V                                   | 4.1     | mA             | 26,530Ω          |                       |                        |                |                 |                       |
|       | 24V                                    | 29.75mA | 25.35mA        | 350Ω             | 0.71W                 | 0.61W                  |                |                 |                       |
| AC    | 115V                                   | 7.65mA  | 6.3mA          | 8,100Ω           | 0.88W                 | 0.73W 80% Max<br>0.63W | 80% Max        | 30% Min         | 130%                  |
|       | 230V                                   | 3.42mA  | 2.72mA         | 32,500Ω          | 0.79W                 |                        |                |                 |                       |

#### **Socket Specifications**


|                  | Relays   | Terminal                | Electrical Rating | Wire Size                 | Torque         |
|------------------|----------|-------------------------|-------------------|---------------------------|----------------|
| DIN Rail Sockets | SQ1V-07B | M3 screw with box clamp | 300V, 12A         | Maximum up to 2 - #14 AWG | 1.0N●m Maximum |
| DIN HAII SUCKEIS | SQ2V-07B | M3 screw with box clamp | 300V, 8A          | Maximum up to 2 - #14 AWG | 1.0N•m Maximum |
| DCD Mount Cooket | SQ1V-63  | PCB mount               | 300V, 12A         | —                         | —              |
| PCB Mount Socket | SQ2V-63  | PCB mount               | 300V, 12A         | —                         | —              |



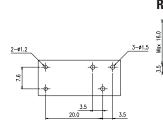

# R02

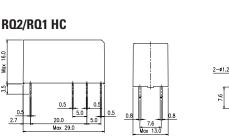


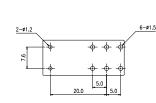
## Maximum Switching Capacity RQ1, RQ1 High Capacity & RQ2



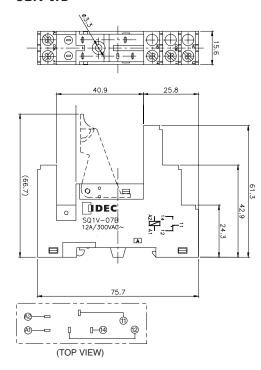
#### Internal Connection (View from Bottom)





746

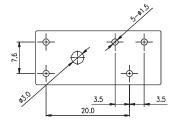

**RQ Series** 

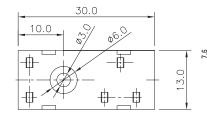
## Dimensions (mm)

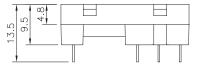


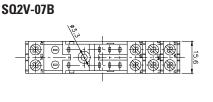


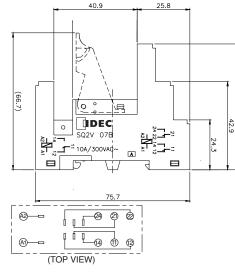




### SQ Socket Domensions SQ1V-07B





# SQ1V-63 PCB Pin Layout


SQ1V-63



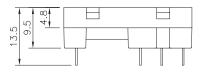








SQ2V-63 PCB Pin Layout

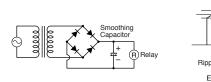

Å

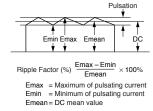
20.0

03.0

SQ2V-63

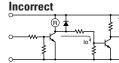
61.3

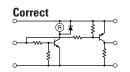




## **Operating Instructions**

### **Driving Circuit for Relays**

- 1. To ensure correct relay operation, apply rated voltage to the relay coil.
- 2. Input voltage for the DC coil:


A complete DC voltage is best for the coil power to make sure of stable relay operation. When using a power supply containing a ripple voltage, suppress the ripple factor within 5%. When power is supplied through a rectification circuit, the relay operating characteristics, such as pickup voltage and dropout voltage, depend on the ripple factor. Connect a smoothing capacitor for better operating characteristics as shown below.






#### 3. Leakage current while relay is off:

When driving an element at the same time as the relay operation, special consideration is needed for the circuit design. As shown in the incorrect circuit below, leakage current (lo) flows through the relay coil while the relay is off. Leakage current causes coil release failure or adversely affects the vibration resistance and shock resistance. Design a circuit as shown in the correct example.



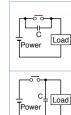


4. Surge suppression for transistor driving circuits:

When the relay coil is turned off, a high-voltage pulse is generated, causing a transistor to deteriorate and sometimes to break. Be sure to connect a diode to suppress the back electromotive force. Then, the coil release time becomes slightly longer. To shorten the coil release time, connect a Zener diode between the collector and emitter of the transistor. Select a Zener diode with a Zener voltage slightly higher than the power voltage.



#### **Protection for Relay Contacts**


 The contact ratings show maximum values. Make sure that these values are not exceeded. When an inrush current flows through the load, the contact may become welded. If this is the case, connect a contact protection circuit, such as a current limiting resistor.

#### 2. Contact protection circuit:

When switching an inductive load, arcing causes carbides to form on the contacts, resulting in increased contact resistance. In consideration of contact reliability, contact life, and noise suppression, use of a surge absorbing circuit is recommended. Note that the release time of the load becomes slightly longer. Check the operation using the actual load. Incorrect use of a contact protection circuit will adversely affect switching characteristics. Four typical examples of contact protection circuits are shown in the following table:

| RC       |                    | <ul> <li>This protection circuit can be used when the load impedance is smaller than the RC impedance in an AC load power circuit.</li> <li>R: Resistor of approximately the same resistance value as the load</li> <li>C:0.1 to 1 µF</li> </ul>                                 |
|----------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                    | This protection circuit can be used for both AC and<br>DC load power circuits.<br>R: Resistor of approximately the same resistance<br>value as the load<br>C: 0.1 to 1 µF                                                                                                        |
| Diode    | Power D Ind. Load  | This protection circuit can be used for DC load power<br>circuits. Use a diode with the following ratings.<br>Reverse withstand voltage: Power voltage of the<br>load circuit x 10<br>Forward current: More than the load current                                                |
| Varistor | Power by Ind. Load | This protection circuit can be used for both AC and DC load power circuits.<br>For a best result, when using a power voltage of 24 to 48V AC/DC, connect a varistor across the load.<br>When using a power voltage of 100 to 240V AC/DC, connect a varistor across the contacts. |

3. Do not use a contact protection circuit as shown below:



This protection circuit is very effective in arc suppression when opening the contacts. But, the capacitor is charged while the contacts are opened. When the contacts are closed, the capacitor is discharged through the contacts, increasing the possibility of contact welding.

This protection circuit is very effective in arc suppression when opening the contacts. But, when the contacts are closed, a current flows to charge the capacitor, causing contact welding.

Generally, switching a DC inductive load is more difficult than switching a DC resistive load. Using an appropriate arc suppressor, however, will improve the switching characteristics of a DC inductive load.

#### Soldering

- 1. When soldering the relay terminals, use a soldering iron of 30 to 60W, and quickly complete soldering (within approximately 3 seconds).
- 2. Use a non-corrosive rosin flux.

Switches & Pilot Lights

## **Operating Instructions con't**

IDEC

# Other Precautions

1. General notice:

To maintain the initial characteristics, do not drop or shock the relay.

The relay cover cannot be removed from the base during normal operation. To maintain the initial characteristics, do not remove the relay cover.

Use the relay in environments free from condensation, dust, sulfur dioxide  $(SO_2)$ , and hydrogen sulfide  $(H_2S)$ .

• Turn off the power to the relay before starting installation, removal, wiring,

maintenance, and inspection of the relays. Failure to turn power off may

Observe specifications and rated values, otherwise electrical shock or fire

• Use wires of the proper size to meet voltage and current requirements. Tight-

en the terminal screws on the relay socket to the proper tightening torque.

• Surge absorbing elements on AC relays with RC or DC relays with diode are

provided to absorb the back electromotive force generated by the coil. When

the relay is subject to an excessive external surge voltage, the surge absorb-

ing element may be damaged. Add another surge absorbing provision to the

cause electrical shock or fire hazard.

hazard may be caused.

relay to prevent damage.

Make sure that the coil voltage does not exceed applicable coil voltage range.

- 2. UL and CSA ratings may differ from product rated values determined by IDEC.
- 3. Do not use relays in the vicinity of strong magnetic field, as this may affect relay operation.

## **Safety Precautions**

#### Precautions for the RU Relays

- Before operating the latching lever of the RU relay, turn off the power to the RU relay. After checking the circuit, return the latching lever to the original position.
  - Do not use the latching lever as a switch. The durability of the latching lever is a minimum of 100 operations.
  - When using DC loads on 4PDT relays, apply a positive voltage to terminals of neighboring poles and a negative voltage to the other terminals of neighboring poles to prevent the possibility of short circuits.
  - DC relays with a diode have a polarity in the coil terminals. Apply the DC voltage to the correct terminals.